Water and Sanitation Sector Leadership Group Meeting

CSIR Water Initiatives Aligned to SDGs

13 September 2018

Dr. Harrison Pienaar

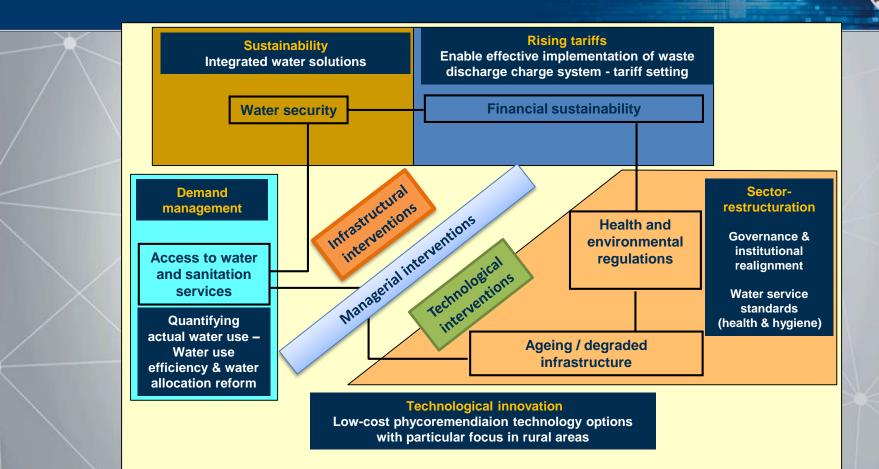
Sir

our future through science

Table of Contents

 Effective Implementation of Sustainable Development Goals (SDG 6)

Major challenges and RDI opportunities linked to SDG 6
 CSIR Water Initiatives in response to SDG 6


Effective Implementation of SDG 6

Ensure availability and sustainable management of water and sanitation to all

- Ensure for current and future generations.
- Implies short, medium and long-term implications to be addressed simultaneously.
- Major challenges and opportunities in responding to these.
- Require rapid, intermediate and comprehensive interventions.
- Applies to SDG 6.1- 6.6
 - Access, efficient use and sustainability
 - Improving water quality and ecosystems restoration
 - IWRM and international best practise

Major Challenges and RDI Opportunities

SDG 6.3 Improve Water Quality by Reducing Pollution

Pollution detection and treatment

- Low-cost rapid pathogen detection technology
- Near-real-time water quality monitoring system
- Polymer-based adsorbents for removal of toxic pollutants from water application in acid mine drainage treatment, EDCs, and emerging contaminants (nano-scale)
- > Multi-scale modelling, analysis and advanced computation (water/energy linkages)
- Low-cost passive waste treatment technology facilitate effective and efficient removal of nutrients and pathogens in WWTWs effluent in rural areas in particular
- Desalination of inland contaminated water streams for maximum recovery of water
- > Ecological infrastructure and its role in water resource management

SDG 6.4 Substantially Increase Water-Use Efficiency

- <u>WaterGrid-Sense</u> for applications promoting smart water use (water loss control at municipal level)
- <u>Agricultural biological control agents</u> ability to improve soil health and crop growth rate - reduce water utilisation in agriculture
- Water Use Measurements analysing water user behaviours for more accurate monitoring and planning of water allocations to promote water use efficiency and enhance productive water uses (water use audits – validation and verification)

Contents lists available at ScienceDirect

Physics and Chemistry of the Earth

journal homepage: www.elsevier.com/locate/pce

Validation and verification of lawful water use in South Africa: An overview of the process in the KwaZulu-Natal Province

E. Kapangaziwiri^{*}, J. Mwenge Kahinda, S. Dzikiti, A. Ramoelo, M. Cho, R. Mathieu, M. Naidoo, A. Seetal, H. Pienaar

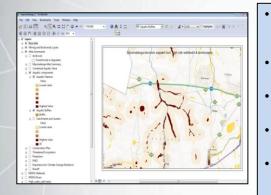
CSIR, Natural Resources and Environment, PO Box 395, Pretoria 0001, South Africa

SDG 6.5: Implement IWRM at all Levels

Quantification of catchment processes impacting on water

- Understanding hydrological impacts of land-use changes through measurements & modelling.
- Agricultural, forest & alien invasive plant wateruse.
- Catchment/WMA-scale water resources assessments & management.
- Use of Earth Observation data / Remote Sensing for spatial ET estimation & IWRM.
- Water use verification & validation.

- Water use efficiency water productivity water footprints/stewardship national water use index.
- Geohydrological & geochemical assessments (GW/SW interaction).
- Reserve determinations, managed Aquifer recharge, geochemical monitoring.
- Supplementing water supplies GW for irrigation.
- Rainwater Harvesting rural water supply.



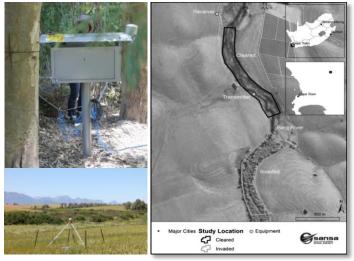
SDG 6.6 Protect and Restore Water-related Ecosystems

Ecological infrastructure and its role in water resource management

- The value of wetlands valuable services to society that compliments traditional hard/built infrastructure is becoming increasingly important.
- Applied research improve understanding & management of wetlands.
- Wetland Classification and Risk Assessment Index (WCRAI) management of natural freshwater wetland ecosystems.
- Eskom initiative in response to need for improving management of wetlands.
- Research work expanded development of a High Risk Wetlands Atlas.

Eskom

Some Project Examples...


Responding to droughts and floods

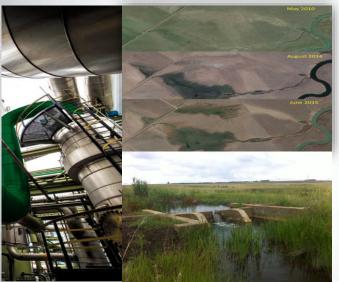
- Water Bank / Managed Aquifer Recharge and Storage (MARS)
- Longstanding work with City of Cape Town in the Atlantic Water Supply Scheme
- Highly effective storage mechanism in that it reduces evapotranspiration

Quantifying potential water savings from clearing invasive alien

* Bergriver Catchment

- Rainfall over 1-year study period = 407mm
- Water use by large E. camaldulensis trees = 100 L/tree/day (winter) 260 L/tree/day (summer).
- (47 000 L/tree/year)
- Stand level Euc transpiration (≅833 mm/y)
- Potential for significant augmentation of streamflow through clearing of *E. camaldulensis*
- Actual volumes of water released will depend on differences in the water use characteristics of invaded stands relative to mature native replacement stands.

Desalination of inland water streams: maximum recovery of water


- Reducing brine to fresh water and dry salt at acceptable cost and energy consumption:
 - Release more fresh water
 - Treat contaminated water streams, including AMD
- Determine energy and economic feasibility of large-scale AMD treatment at Eskom power stations

- Develop modelling tools to allow realistic calculation of:
 - Energy demand, salt concentration, pressure, temperature and heat transfer surface areas for both MED and heat pumps in different configurations
 - Electricity generation impact on power stations of steam bled to drive MED and heat pumps

Valuing Natural Resources

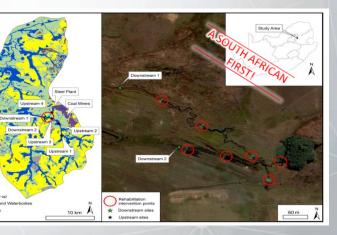
Wetland rehabilitation (OMNIA Wetlands – Zaalklapspruit)

- Determine the status quo of the downstream environment in relation to their integrated water use licence
- Evaluate the potential use of constructed wetlands for effluent management
- Based on estimates of study, the asset value of Zaalklapspruit Wetland - between \$42M -\$65M, of which water purification & waste assimilation service contributes \$11M - \$48 M.
- By rehabilitating Zaalklapspruit Wetland at a cost of \$145K able to produce between \$11M
 \$48M on the natural asset balance sheet of SA.



Rehabilitation in Mining Areas

Treatment of AMD and wetland rehabilitation



The outcome of the research aims to:

Irban bu

- i) Inform water use license decisions regarding the monitoring and management of wetlands.
- Inform decisions regarding the management and treatment of acid mine drainage (AMD) as well as the potential of rehabilitating the wetlands.
- iii) Enhancing goods and services that wetlands provide.

Transboundary Water Cooperation

Simulating interaction of multiparty coinvestment and cooperation options

Results: SIMCCOTM developed as tool that supports interactive & cooperative gaming through role play, options ID & evaluation.

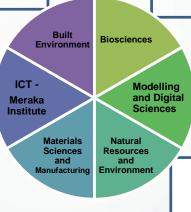
Use: Supports interactive gaming to simulate cooperative engagement between participants from the military and civil society to ID & discuss options to improve mission sustainability.

Future: Potential to upscale & replicate in different countries and with wide range of stakeholder groups.

Policy to inform flood and drought-induced migration

Scope: Advancing our understanding of the linkages between climate-induced migration and Southern Africa's preparedness to respond to internal and crossborder displacements due to environmental disasters. Use: Strengthening regional and national policy to inform the impact of environmental migration in SA, and how to integrate it systematically into adaptation planning processes.

Future: Becoming the Southern African knowledge hub on climate-induced human mobility, growing international network.


Integrated approach to address water & sanitation problems

Infrastructure interventions support Waste water treatment technologies – membrane distillation. Smart buildings – water use efficiencies and optimisation.

Wireless sensor networks reticulation management . Dynamic hydraulic model for water pressure management.

Rapid pathogen detection technology Water & waste water purification – novel adsorbent technologies (to treat AMD and their industrial focus)

Near real-time monitoring systems

Effluent treatment technologies.

Advanced modelling – water demand and supply; Leakage detection; Water quality.

Emerging contaminants Governance and planning support Industrial water and waste water treatment

Way forward

The CSIR to further develop and strengthen its integrated water research capability

Developing a uniform vision and value proposition to address national water supply, use and reuse issues

Thank you

our future through science